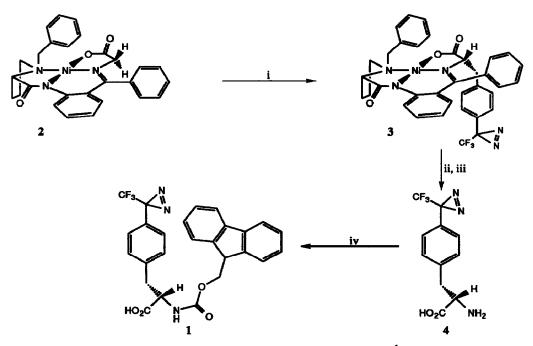


0040-4039(94)00838-8

An Efficient Route to S-N-(9-Fluorenylmethoxycarbonyl)-4'-(1-azi-2,2,2trifluoroethyl)phenylalanine.

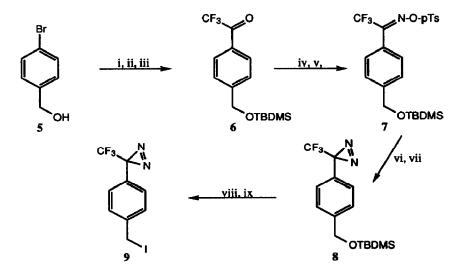
Colin W. G. Fishwick,* John M. Sanderson


The University of Leeds, School of Chemistry, Leeds LS2 9JT, U.K.

John B. C. Findlay

The University of Leeds, Department of Biochemistry and Molecular Biology, Leeds LS2 9JT, U.K.

Abstract: An extremely efficient synthesis of optically pure photoactivatable phenylalanine derivative 1 is described. The key step involves a highly diastereoselective alkylation of a chiral glycine equivalent.


Photoaffinity labelling has become a powerful method in the study of biological structure and function. The most important class of photolabile group used to modify ligands is the chemically stable aryltrifluoromethyl-3H-diazirine which, upon photolysis, gives rise to carbenes which do not rearrange, and form chemically stable covalent cross-links with the receptor. As part of our studies on important biological receptors, we required access to peptides containing such moieties at precisely defined locations and identified phenylalanine derivative 1 as a useful system for incorporation into peptides *via* solid phase peptide synthesis.

(i) 9, NaOH, MeCN, 93%; (ii) aq. HCl, MeOH; (iii) Ion exchange, 95%; (iv) Fmoc-OSu¹, aq. Na₂CO₃, acetone, 79% Scheme 1

Although syntheses of the corresponding amino acid of 1 have been reported^{2,3} these involve the alkylation of a glycine derivative with a 4'-(1-azi-2,2,2-trifluoroethyl)benzyl halide under basic conditions, followed by subsequent, and rather wasteful, enzymatic resolution of the N-acyl amino acid, a route much adopted in the synthesis of optically active α -amino acids. We report here a highly efficient route which gives direct access to optically pure amino acid derivative 1, and it's incorporation into peptides by solid-phase peptide synthesis.

An alternative method of synthesising amino acids with high enantioselectivity involves⁴ the alkylation of the glycine moiety of the complex 2 (scheme 1)⁵. Although the required benzylation precursor for the complex 2, $3-[\alpha-Iodo-p-tolyl)-3-(trifluoromethyl)-3H$ -diazirine has been reported², in our hands this preparation proved wholly unsatisfactory, and a much improved procedure was developed (scheme 2)⁵.

(i) TBDMSCl, imidazole, DMF, 93%; (ii) ⁿBuLi, THF, -74 °C; (iii) Et₂NCOCF₃, 93%; (iv) NH₂OH.HCl, pyridine, EtOH, 90%; (v) pTsCl, DIPEA, DMAP, CH₂Cl₂, 97%; (vi) NH₃, Et₂O, 100%; (vii) Ag₂O, Et₂O, 95%; (viii) TBAF, THF, 95%; (ix) CH₃P(OC₆H₅)₂I, MeCN, 91%

Scheme 2

Thus the benzyl alcohol 5 was protected as the TBDMS ether and converted to the trifluoromethyl ketone 6 in high yield by reaction of the corresponding aryl lithium with N,N-diethyltrifluoroacetamide⁶. Attempts to synthesise the ketone 6 via reaction of the Grignard reagent with ethyl trifluoroacetate, TFA, TFAA, and N,N-diethyltrifluoroacetamide respectively all gave only low yields. The ketone 6 was converted to the corresponding oxime², and the p-toluenesulphonyl derivative 7 was readily prepared by reaction of the oxime with pTsCl at room temperature in the presence of DIPEA and catalytic amounts of DMAP⁷. Attempts to form the tosyl oxime by reaction in refluxing pyridine gave only poor yields of 7. Reaction of 7 with excess ammonia at -78 °C ^{8,9} gave the diaziridine in quantitative yields, and oxidation of the diaziridine with Ag₂O provided the diazirine 8 in excellent yield. Deprotection of the alcohol with tetra-n-butyl ammonium fluoride rather than HCl/ MeOH² was found to give much better yields, and benzyl iodide 9 was prepared using standard methods.

Alkylation of complex 2 was found to occur smoothly at room temperature with high yield (93%) and

high diastereoselectivity(>95%; no s,r diastereoisomer detected) using a modified procedure to that described in the literature¹⁰. Hydrolysis of the complex¹¹ occurred rapidly (10 min) in refluxing HCl/ MeOH, without destruction of the diazirine ring, to give the amino acid 4 after cation exchange chromatography. Attempts to synthesise 1 from 4 by reaction with Fmoc-Cl gave rise to unacceptable amounts of dipeptide formation; however, reaction with Fmoc-OSu enabled the Fmoc-amino acid 1 to be synthesised in good yield in the absence of dipeptides¹². We have recently used this phenylalanine analogue to synthesise a number of mediumsize photoactivatable peptides by solid-phase peptide synthesis¹³. The coupling efficiency of the photoactivatable analogue was found to be excellent (>98%), as was the stability of the diazirine throughout the synthesis and purification stages, where the absorbance maximum of the diazirine at 350 nm proved to be a useful aid to purification. Studies regarding the binding of these peptides to important biological receptors are in progress and will be reported elsewhere.

ACKNOWLEDGEMENT

The authors would like to thank the MRC and Wyeth Research (U.K.) for a studentship to J M S

REFERENCES AND NOTES

1. Abbreviations used: Fmoc, 9-fluorenylmethoxycarbonyl; TBDMS, *tert*-butyldimethylsilyl; DMF, dimethylformamide; THF, tetrahydrofuran; Ts, toluenesulphonyl; DIPEA, N,N-diisopropylethylamine; DMAP, 4-dimethylaminopyridine; TBAF, tetra-*n*-butylammonium fluoride, TFA, trifluoroacetic acid; TFAA, trifluoroacetic anhydride.

2. Shih, L. Y. and Bayley, H., Analytical Biochem., 1983, 144, 132-141.

3. Nassal, M., J. Amer. Chem. Soc., 1984, 106, 7540-7545.

- 4. Belokon, Y. Janssen Chimica Acta, 1992, 10, 4-12 (and references therein).
- 5. All compounds gave satisfactory data.

6. Procedure as follows: To a stirred solution of the silyl ether (24.94 g, 82.8 mmol) in THF (420 cm³) at -74 °C (CO₂/Et₂O) was added dropwise ⁿBuLi (1.6 M in hexane, 62 cm³, 99.2 mmol) over a 1 h period. After stirring the mixture at the same temperature for 75 min, a solution of N,N-diethyltrifluoroacetamide (19.19 g, 113 mmol) in THF (60 cm³) was added dropwise over 1 h. Following the addition the mixture was stirred at -74 °C for a further 75 min before the reaction was quenched with NH₄Cl (300 cm³) without warming. After warming to room temperature, the mixture was diluted with Et₂O (500 cm³) and washed with saturated aq. NH₄Cl (2 x 500 cm³) and water (2 x 200 cm³) before being dried (MgSO₄). Following removal of the drying agent, the solvent was removed *in vacuo* and the resulting pale yellow liquid distilled *in vacuo* to give trifluoromethyl ketone 6 (24.43 g, 93%) as a clear colourless liquid; b.p. 120-123 °C/0.7 mm; v_{max}/cm⁻¹ 1715 (CO); δ_H (300 MHz) 0.12 (6 H, s, Me), 0.96 (9 H, s, Bu^t), 4.83 (2 H, s, CH₂), 7.50 (2 H, d, J 8.4, Ar), 8.06 (2 H, d, J 7.7, Ar).

7. For example see: Hatanaka, Y., Nakayama, H., and Kanaoka, Y., Heterocycles, 1993, 35, 997-1004.

8. For example see: Baldwin, J. E., Jesudason, C. D., Moloney, M. G., Morgan, D. R., and Pratt, A. J., Tetrahedron, 1991, 47, 5603-5614.

9. For example see: Platz, M., Admasu, A. S., Kwiatkowski, S., Crocker, P. J., Imai, N., and

Watt, D. S., Bioconjugate Chem., 1991, 2, 337-341.

10. Procedure as follows: The Ni(II) complex 2 was prepared as described previously⁴. To a stirred suspension of complex 2 (2.4390 g, 4.90 mmol) and finely powdered NaOH (0.85 g, 21.2 mmol) in MeCN (8 cm³) at -20 °C under Ar, was added a solution of iodide 9 (1.2592 g, 3.86 mol) in MeCN (4 cm³), in one portion. The mixture was warmed to room temperature and stirred for a further 20 h before being diluted with CH₂Cl₂ (200 cm³) and washed with aq. AcOH (0.2 M; 125 cm³) and water (2 x 100 cm³). Following drying of the solution (MgSO₄) and removal of the drying agent, the solvent was removed *in vacuo* to give the crude product as a red oil. Purification by flash column chromatography (CH₂Cl₂:acetone; 5:1) gave pure Ni(II) complex 3 (2.4932 g, 93%) as a red solid m.p. 199.9 - 201.4 °C (dec.); v_{max} /cm⁻¹ 3450, 2860, 1630, 1335, 1160, 930, 750, 700 ; λ_{max} (EtOH) 404 (3.24), 320 (3.54), 248 (4.11); [α]_D (c = 0.030, EtOH) +10.74; δ_H (400 MHz) 1.65-1.75 (1 H, m, γ H Pro), 1.84-1.91 (1 H, m, γ H Pro), 2.20-2.28 (1 H, m, β H Phe and δ H Pro), 3.31 (1 H, dd, *J* 6.1 and 10.2, α H Pro), 3.46 (1 H, d, *J* 12.7, CH₂ Bzl), 4.26 (1 H, d, *J* 12.4, CH₂ Bzl), 4.29 (1 H, dd, *J* 4 and 5.7, α H Phe), 6.64-6.89 (3 H, m, Ar), 7.13-7.22 (6 H, m, Ar), 7.27-7.46 (4 H, m, Ar), 7.51-7.58 (2 H, m, Ar), 7.97-8.21 (3 H, m, Ar).

11. Procedure as follows: A solution of Ni(II) complex 3 (0.4154 g, 0.596 mmol) in MeOH (10 cm³) and aq. HCl (1 M, 6 cm³) was gently heated at reflux for 10 min. After removal of the solvent *in vacuo* the residue was diluted with water (20 cm³) and extracted with CH₂Cl₂ (2 x 20 cm³). The CH₂Cl₂ extracts were combined and washed with water (2 x 20 cm³). All aqueous extracts were combined and adjusted to pH 2.5 with aq. NH₃ before being adsorbed onto a column of Dowex 50 (H⁺) cation exchange resin. The amino acid 9 was eluted with 5% methanolic NH₃. Removal of the solvent *in vacuo* gave the crude product as a white solid which was recrystallised from MeOH/water to give pure amino acid 4 (0.1547 g, 95%) as a white solid; v_{max} /cm⁻¹ 3050, 2850, 1600, 1590, 1410, 1275, 940, 835, 705; λ_{max} (MeOH) 350 (2.05); $[\alpha]_D$ (c = 0.115, MeOH) -70.13; δ_H (300 MHz, CF₃COOD) 3.41-3.48 (1 H, m, β H), 3.64-3.71 (1 H, m, β H), 4.71-4.76 (1 H, m, α H), 7.30 (2 H, d, J 8.1, Ar), 7.42 (2 H, d, J 7.8, Ar).

12. Data for 1: m.p. 119.2 - 120.5 °C; v_{max} /cm⁻¹ 3300 (NH), 1730, 1685, 935, 760, 740; λ_{max} (MeOH) 357 (2.45), 300 (3.78), 289 (3.72), 265 (4.30), 221 (4.47); $[\alpha]_D$ (c = 0.338, EtOH) +24.84; δ_H (400 MHz) 3.10 (1 H, dd, J 6.0 and 14.5, β H), 3.22 (1 H, dd, J 5.1 and 14.0, β H), 4.18-4.21 (1 H, m, CH Fmoc), 4.39 (1 H, dd, J 6.5 and 10.5, CH₂ Fmoc), 4.50 (1 H, dd, J 7.0 and 10.6, CH₂ Fmoc), 4.66-4.67 (1 H, m, α H), 5.17 (1 H, d, J 7.4, NH), 7.08 (2 H, d, J 8.0, Ar Phe), 7.13 (2 H, d, J 8.2, Ar Phe), 7.29-7.33 (2 H, m, Ar Fmoc), 7.41 (2 H, t, J 7.7, Ar Fmoc), 7.52-7.55 (2 H, m, Ar Fmoc), 7.78 (2 H, d, J 7.6, Ar Fmoc).

13. General procedure: Peptides were synthesised to a 30 μ mol scale on Novasyn PR 500 amide resin with a Milligen 9050 peptide synthesiser using standard methodology for Fmoc amino acid derivatives. In order to couple 1 onto the growing peptide chain, the resin was removed from the machine following the Fmoc deprotection cycle and washed successively with 0.2M AcOH, MeOH, and CH₂Cl₂ before being dried *in vacuo*. The dried resin was suspended in a solution of 1 (29.9 mg, 60 μ mol), and 1-hydroxybenzotriazole (8.2 mg, 61 μ mol) in CH₂Cl₂ (2 cm³) and DMF (0.25 cm³) and the mixture stirred gently at room temperature under Ar for 15 min. After this period, N,N'-diisopropylcarbodiimide (9.5 μ l, 61 μ mol) was added and the mixture stirred for a further 3 h before the resin was collected at the pump, washed with CH₂Cl₂ and dried *in vacuo*. At all stages, precautions were taken to exclude light from mixtures containing the diazirine.

(Received in UK 22 March 1994; revised 18 April 1994; accepted 29 April 1994)